8 research outputs found

    Exploiting Multiple Sensory Modalities in Brain-Machine Interfaces

    Get PDF
    Recent improvements in cortically-controlled brain-machine interfaces (BMIs) have raised hopes that such technologies may improve the quality of life of severely motor-disabled patients. However, current generation BMIs do not perform up to their potential due to the neglect of the full range of sensory feedback in their strategies for training and control. Here we confirm that neurons in the primary motor cortex (MI) encode sensory information and demonstrate a significant heterogeneity in their responses with respect to the type of sensory modality available to the subject about a reaching task. We further show using mutual information and directional tuning analyses that the presence of multi-sensory feedback (i.e. vision and proprioception) during replay of movements evokes neural responses in MI that are almost indistinguishable from those responses measured during overt movement. Finally, we suggest how these playback-evoked responses may be used to improve BMI performance

    Incorporating Feedback from Multiple Sensory Modalities Enhances Brain–Machine Interface Control

    Get PDF
    The brain typically uses a rich supply of feedback from multiple sensory modalities to control movement in healthy individuals. In many individuals, these afferent pathways, as well as their efferent counterparts, are compromised by disease or injury resulting in significant impairments and reduced quality of life. Brain–machine interfaces (BMIs) offer the promise of recovered functionality to these individuals by allowing them to control a device using their thoughts. Most current BMI implementations use visual feedback for closed-loop control; however, it has been suggested that the inclusion of additional feedback modalities may lead to improvements in control. We demonstrate for the first time that kinesthetic feedback can be used together with vision to significantly improve control of a cursor driven by neural activity of the primary motor cortex (MI). Using an exoskeletal robot, the monkey\u27s arm was moved to passively follow a cortically controlled visual cursor, thereby providing the monkey with kinesthetic information about the motion of the cursor. When visual and proprioceptive feedback were congruent, both the time to successfully reach a target decreased and the cursor paths became straighter, compared with incongruent feedback conditions. This enhanced performance was accompanied by a significant increase in the amount of movement-related information contained in the spiking activity of neurons in MI. These findings suggest that BMI control can be significantly improved in paralyzed patients with residual kinesthetic sense and provide the groundwork for augmenting cortically controlled BMIs with multiple forms of natural or surrogate sensory feedback

    Integrating neuroimaging biomarkers into the multicentre, high-dose erythropoietin for asphyxia and encephalopathy (HEAL) trial: rationale, protocol and harmonisation

    Get PDF
    Introduction: MRI and MR spectroscopy (MRS) provide early biomarkers of brain injury and treatment response in neonates with hypoxic-ischaemic encephalopathy). Still, there are challenges to incorporating neuroimaging biomarkers into multisite randomised controlled trials. In this paper, we provide the rationale for incorporating MRI and MRS biomarkers into the multisite, phase III high-dose erythropoietin for asphyxia and encephalopathy (HEAL) Trial, the MRI/S protocol and describe the strategies used for harmonisation across multiple MRI platforms. Methods and analysis: Neonates with moderate or severe encephalopathy enrolled in the multisite HEAL trial undergo MRI and MRS between 96 and 144 hours of age using standardised neuroimaging protocols. MRI and MRS data are processed centrally and used to determine a brain injury score and quantitative measures of lactate and n-acetylaspartate. Harmonisation is achieved through standardisation-thereby reducing intrasite and intersite variance, real-time quality assurance monitoring and phantom scans. Ethics and dissemination: IRB approval was obtained at each participating site and written consent obtained from parents prior to participation in HEAL. Additional oversight is provided by an National Institutes of Health-appointed data safety monitoring board and medical monitor

    Integrating neuroimaging biomarkers into the multicentre, high-dose erythropoietin for asphyxia and encephalopathy (HEAL) trial: rationale, protocol and harmonisation

    No full text
    Introduction MRI and MR spectroscopy (MRS) provide early biomarkers of brain injury and treatment response in neonates with hypoxic-ischaemic encephalopathy). Still, there are challenges to incorporating neuroimaging biomarkers into multisite randomised controlled trials. In this paper, we provide the rationale for incorporating MRI and MRS biomarkers into the multisite, phase III high-dose erythropoietin for asphyxia and encephalopathy (HEAL) Trial, the MRI/S protocol and describe the strategies used for harmonisation across multiple MRI platforms.Methods and analysis Neonates with moderate or severe encephalopathy enrolled in the multisite HEAL trial undergo MRI and MRS between 96 and 144 hours of age using standardised neuroimaging protocols. MRI and MRS data are processed centrally and used to determine a brain injury score and quantitative measures of lactate and n-acetylaspartate. Harmonisation is achieved through standardisation—thereby reducing intrasite and intersite variance, real-time quality assurance monitoring and phantom scans.Ethics and dissemination IRB approval was obtained at each participating site and written consent obtained from parents prior to participation in HEAL. Additional oversight is provided by an National Institutes of Health-appointed data safety monitoring board and medical monitor.Trial registration number NCT02811263; Pre-result
    corecore